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In this paper a continuous probabilistic approach formulated using Kolmogorov-Fokker-Planck forward and
backward models is applied to Hubbell’s zero-sum neutral theory for species dynamics in local community.
Using this technique the probability density of species abundance, distribution of the first passage time to
extinction or fixation and probability of extinction are defined. The resulting values for the distribution of the
first passage time to extinction are verified by the simulation study of Hubbell’s zero-sum neutral model for the
local community. Based on the sensitivity analysis for the continuous probabilistic models, the realistic clas-
sification of local communities subject to their diversity and species dynamics is proposed with respect to the
immigration probability, the species metacommunity relative abundance, and the size of local community.
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The main goals of biodiversity study are to explain and
quantify the distribution, abundance, and dynamics of living
organisms in ecological communities. These questions are
also of central theoretical and practical importance in conser-
vation biology and ecosystem management �1,2�, since un-
derstanding the mechanisms of species abundance dynamics
is of high concern in viability analysis.

Species abundance relationships have long been studied
by ecologists, who defined them as species commonness and
rarity in ecological communities �1,3,4�. These relationships
are usually described by species abundance distributions
which show the number of species as the functions of their
observed abundances.

Early studies on species abundance relationships were fo-
cused on finding distributions that could fit well empirical
data. Among the proposed distributions were the log-series
�5� and the log-normal �6�. Later the preference was given to
modeling species abundance relationships using one or an-
other ecological theory of community organization. Using
this approach the broken-stick model was proposed by Mac-
Arthur �7,8�; the log-normal patterns of species abundances
were explained using the niche preemption model �9–11�,
and using the dynamic population model with Gompertz
density dependence �12�. The gamma type of abundance dis-
tribution, including Fisher’s log-series, the extended gamma
distribution, and MacArthur’s broken-stick model, was elu-
cidated using the dynamic approach with logistic density de-
pendence �13�.

In this paper another theory of the species abundance re-
lationships is discussed. This theory is based on the assump-
tion of neutrality, which, on the contrary to the niche theory,
does not assume differences between individuals of different
species and trophic hierarchy of community �14–16�. Al-
though the concept of neutral community appeared a long
time ago �17�, it has not attracted much attention until Hub-
bell published his monograph �16�, where he proposed a neu-
tral theory that unifies theories of biodiversity and biogeog-
raphy. The reference ecosystem of Hubbell’s neutral theory

is a group of throphically similar, sympatric species that
complete for the same or similar resources �15,16�. Hubbell’s
theory was constructed on the basis of the assumption about
the zero-sum dynamics, which states that the sum of all
changes in species abundances is always zero, that is, the
total number of individuals in the community is a conserved
quantity �16�. Based on this assumption, the neutral theory
predicts the existence of new statistical distribution of rela-
tive species abundance, called the zero-sum multinomial
�16�. This distribution is close to a log-series for large immi-
gration probabilities, and is more “humped” for small immi-
gration probabilities �14,18�. The analytical formalization for
zero-sum multinomials and other distributions generated un-
der assumption of neutrality was obtained in Refs. �19–23�.
The performance of the zero-sum multinomial has been in-
tensively compared only with the log-normal distribution
�16,18,23–27�. Hubbell showed that the zero-sum multino-
mial distribution fits tropical forest tree and coral reefs
datasets better than the log-normal �16,28�. However, ac-
cording to recent analysis, even if the log-normal theories do
not lead to biologically realistic species abundance distribu-
tions �27�, one cannot always distinguish between these two
distributions from empirical data �18�.

Since the time when Hubbell’s neutral theory was
established, the neutral theories in ecology has been devel-
oped in many published works, they have been enriched with
a large amount of theoretical results �16,19–23,27,29–34�,
intensive discussion �15,24,26,27,35–38� and testing
�14,16,18,23–25,27�.

In the framework of Hubbell’s neutral theory the popula-
tions are studied in two scales: local community and regional
metacommunity �16,21�. The dynamics of species abun-
dances on the local scale depends on species representation
in the metacommunity—a large reservoir of all trophically
similar individuals and species with constant fractional spe-
cies abundances, on the intensity of immigration from the
metacommunity and, of course, on the size of local commu-
nity. Based on the principle of neutrality and zero-sum as-
sumption Hubbell defined the model for the abundance Ni of
species i �i=1, . . . ,S� in a local community of size J, J
=� j=1

S Nj, using the following transition probabilities �16�:*FAX: 780-492-4323. Email address: petro@ualberta.ca
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Wi�N − 1�N� =
N

J
��1 − m�

J − N

J − 1
+ m�1 − �i�� ,

Wi�N + 1�N� =
J − N

J
��1 − m�

N

J − 1
+ m�i� ,

Wi�N�N� = 1 − Wi�N − 1�N� − Wi�N + 1�N� , �1�

where �i is the fractional metacommunity relative species
abundance of the ith species, m is the probability that a death
in the local community will be replaced by an immigrant,
and S is the total number of species.

Hubbell’s model is neutral, so it does not involve any
effect of mating system. Each individual has equal opportu-
nity to migrate and reproduce independently of species abun-
dance and size of local community. The dynamics of species
abundance in neutral local community is described, basically,
in the same way as the dynamics of haploid genes in popu-
lation genetics �38�.

For Hubbell’s model governed by Eq. �1�, the species
abundance distribution and the first passage time of the spe-
cies to extinction or fixation in a local community were in-
vestigated using the Markov chain approach �16�. Hubbell
noticed that the species abundance distribution can take on
different shapes with respect to the immigration probability,
metacommunity relative abundance, and community size. In
the case of an isolated community it was shown that the
mean time to fixation �extinction or complete dominance�
varies as a function of community size and initial species
abundance, and this time is maximal when the initial abun-
dance of the species is half of the community size. For non-
isolated local communities the mean and variance of the first
passage time of the species to extinction were also investi-
gated and, moreover, it was proposed that the time to local
extinction in the ergodic community is approximately
gamma distributed �16�.

The same results for the species abundance distribution
were obtained using Birth-Death Master equation approach
�21–23�, by which the probability that the ith species con-
tains N individuals at time t is governed by the following
system of ordinary differential equations:

dpN,i

dt
= Wi�N�N + 1�pN+1,i + Wi�N�N − 1�pN−1,i

− �Wi�N + 1�N� + Wi�N − 1�N��pN,i, �2�

where N=0, . . . ,J and Wi�0 �−1�=Wi�J �J+1�=0.
Based on the Birth-Death Master equation approach

Volkov et al. �23� obtained the average number of species
with specified abundance in a local community. The number
of species �N�t� containing N individuals at time t was de-
fined as

�N�t� = �
j=1

S

Ij�N,t� , �3�

where the indicator Ij�N , t� is a random variable, which takes
the value 1 with probability pN,j�t� and 0 with probability

1− pN,j�t�, and the average number of species containing N
individuals was calculated as

	�N�t�
 = �
j=1

S

pN,j�t� . �4�

For S demographically identical species in a community the
average number of species was obtained as

	�N�t�
 = SpN�t� , �5�

where pN�t�’s satisfy system of Eq. �2� with �=�i=1/S.
Up to this time, for analysis of Hubbell’s zero-sum neutral

local community only discrete methods were applied. Such
methods are used when the main focus of research is on the
investigation of small living systems; for large systems these
methods are inextricable due to a large number of variables
and equations. In contrast to discrete methods, continuous
methods not only allow us to analyze arbitrary large commu-
nities, but also investigate such important quantities for com-
munity ecology and conservation biology as persistence
probability, risk, or probability of extinction, the distribution
of the first passage time of the species to extinction, see Refs.
�39,40�.

In this paper a continuous probabilistic technique will be
applied for the investigation of Hubbell’s zero-sum neutral
community theory. It will give as a possibility not only to
derive the species abundance distribution and the moments
of the first passage time to extinction or fixation, but also to
define the distribution of the first passage time to extinction
and make a classification of the species dynamics in local
communities with respect to the immigration, species abun-
dance in the metacommunity, and size of local community.
Note that the distribution of the first time to extinction and
the quantitative classification of Hubbell’s zero-sum local
communities have not been obtained before.

The paper is organized as follows. In Sec. I, the continu-
ous model for the probability density of species abundance is
derived using the Kolmogorov-Fokker-Planck forward equa-
tion. Based on the probability density of species abundance
in the local community the distribution of the number of
species with the specified abundance is obtained. In Sec. II,
the continuous approach is applied to the study of the time
development of species abundance distribution in the local
community. Using the Kolmogorov-Fokker-Planck backward
equation technique the distribution and moments of the first
passage time to extinction, and the probability of the species
extinction from the local community are obtained. In Sec.
III, the sensitivity analysis is performed for the equilibrium
species abundance distribution, extinction, and fixation
times. According to this analysis four realistic scenarios for
the species dynamics are distinguished with respect to the
immigration probability, species metacommunity relative
abundance, and the size of the local community. And, finally,
a comparison of the simulation study results with the results
of the continuous analysis is presented.
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I. SPECIES ABUNDANCE DISTRIBUTION

A. Modified model

In order to derive the continuous model for the species
abundance distribution in a zero-sum local community of
size J, we define the transition probabilities for the change
�Ni of the number of individuals Ni of the ith species per
time step �t as

Pr��Ni = − 1�Ni = N� = ��tWi�N − 1�N� ,

Pr��Ni = 1�Ni = N� = ��tWi�N + 1�N� ,

Pr��Ni = 0�Ni = N� = 1 − ��t�Wi�N − 1�N� + Wi�N + 1�N�� ,

�6�

where J=� j=1
S Nj, S is the number of all species, �Ni=Ni�t

+�t�−Ni�t�, �i is the fractional metacommunity relative spe-
cies abundance of the ith species, i=1, . . . ,S, m is the prob-
ability that a death in the local community will be replaced
by an emigrant, and � is the number of death events per unit
time interval. Note that the system of transition probabilities
�6� is derived from Hubbell’s zero-sum model �1�.

For the random variable �Ni, which takes the values −1,
0, and 1 with probabilities specified in �6�, the first and sec-
ond moments per the infinitely small time interval �t can be
easily calculated as

Vi�N� = lim
�t→0

E��Ni�Ni = N�
�t

= �m��i −
N

J
� ,

Di�N� = lim
�t→0

E���Ni�2�Ni = N�
�t

= ��2�1 − m�
N�J − N�
J�J − 1�

+ m�1 − �i�
N

J
+ m�i�1 −

N

J
�� .

�7�

B. Dynamics of species abundance distribution.
Kolmogorov-Fokker-Planck forward equation

To introduce a continuous model for the distribution of
the species abundance, we define the abundance n of the ith
species as a continuous variable allowing any real values
from the interval �0,J�. Then the conditional probability den-
sity, pi�n , t�, that the ith species has abundance n at time t
satisfies the Kolmogorov-Fokker-Planck forward equation

�pi

�t
=

1

2

�2

�n2 �Di�n�pi� −
�

�n
�Vi�n�pi� , �8�

where n� �0,J�, t��, and Vi�n� and Di�n� are the first mo-
ment and the variance of the change in the abundance per
time step �t as �t→0 defined in �7�.

Equation �8� is supplemented with the initial condition
defining the probability density of species abundance pi

0�n�
at the initial time moment t=�

pi�n,�� = pi
0�n�, n � �0,J� . �9�

Equation �8� is considered subject to the following natural
boundary conditions:

1

2

�

�n
�Di�n�pi� − �Vi�n�pi� = 0, �10�

at n=0 and n=J. The boundary conditions �10� are sufficient
for the conservation of probability density


0

J

pi�n,t�dn = 
0

J

pi
0�n�dn = 1, for all t � � . �11�

C. Equilibrium species abundance distribution

The equilibrium �the steady state� solution Pi of Eqs.
�8�–�11� fulfills the following ordinary differential equation
of the second order:

0 =
1

2

d2

dn2 �Di�n�Pi� −
d

dn
�Vi�n�Pi�, n � �0,J� , �12�

and boundary conditions �10�, where the total probability
over the interval �0,J� equals 1.

Equation �12� can be easily transformed to the ordinary
differential equation of the first order

0 =
1

2

d

dn
�Di�n�Pi� − �Vi�n�Pi�, n � �0,J� , �13�

with the integral condition,


0

J

Pi�n�dn = 1, �14�

representing the total probability instead of boundary condi-
tions.

Eqs. �13� and �14� can be explicitly solved. The steady
state solution is

Pi�n� = exp�
0

n 2Vi�y� − Di��y�
Di�y�

dy�
� �

0

J

exp�
0

x 2Vi�y� − Di��y�
Di�y�

dy�dx�−1

.

�15�

For known coefficients Vi and Di from �7�, expression
�15� can be transformed to

Pi�n� = Ci�n− − n

n−
�	−�n+ − n

n+
�−	+

,

Ci = �
0

J �n− − y

n−
�	−�n+ − y

n+
�−	+

dy�−1

, �16�

where n±=−�d1±�d1
2−4d0d2 /2d2�, 	±=−�2n±�v1−d2�+2v0

−d1� /d2�n+−n−�, d0=v0=m�i, v1=−m /J, d1=2�1−m� /J−1
+m�1−2�i� /J, and d2=−1−m /J�J−1�.

It follows from Eqs. �15� and �16� that the steady state
distribution of the species abundance is independent of the

CONTINUOUS PROBABILISTIC APPROACH TO¼ PHYSICAL REVIEW E 74, 021902 �2006�

021902-3



parameter � which corresponds to the time scale.
We would like to emphasize on the symmetry property of

the probability density of species abundance in a local com-
munity of size J stated as

�Pi�n���i=� = �Pi�J − n���i=1−�. �17�

This property can be easily explained for the distribution of
two species with the metacommunity relative abundances �
and 1−�, respectively. In view of �17�, the probabilities that
the first species abundance is n and the second species abun-
dance is J−n are equal.

D. Number of species with specified abundances

By an analogy with Eqs. �3�–�5�, see Refs. �23,32�, the
number of species containing from n1 to n2 individuals at
time t can be defined as

��n1,n2,t� = �
j=1

S

Ij�n1,n2,t� , �18�

where S is the total number of species and indicator
Ij�n1 ,n2 , t� is a random variable which takes the value 1
with probability �n1

n2pj�n , t�dn and 0 with probability 1
−�n1

n2pj�n , t�dn; pj satisfies Eqs. �8�, �9�, and �11� for the evo-
lution of the probability of species abundance or Eqs. �13�
and �14� for the probability of species abundance in an equi-
librium community. Thus, the average number of species
containing from n1 to n2 individuals at time t is given by

	��n1,n2,t�
 = �
j=1

S 
n1

n2

pj�n,t�dn . �19�

When a community consists of S demographically identical
species, the previous expression can be rewritten as

	��n1,n2,t�
 = S
n1

n2

p�n,t�dn , �20�

where p= pj satisfies Eqs. �8�–�11� for dynamic community
or Eqs. �13� and �14� for the equilibrium community with
� j =�=1/S.

II. PERSISTENCE AND EXTINCTION

A. Distribution of the first passage time to extinction.
Kolmogorov-Fokker-Planck backward equation

The aim of this section is to study the probability of spe-
cies extinction within the specified time interval. Note that
this probability is often accepted as a measure of extinction
risk in conservation management �1,2,41�.

Let the initial abundance of the ith species at time t=0 be
n. Then the probability that the ith species has not gone
extinct by time t in a zero-sum neutral community of size J is
defined as

Gi�t,n� = Pr�T 
 t� = 
0

J

pi�y,t�n,0�dy . �21�

This probability fulfills the Kolmogorov-Fokker-Planck
backward equation �39,1�

�Gi

�t
=

1

2
Di�n�

�2Gi

�n2 + Vi�n�
�Gi

�n
, n � �0,J�, t � 0,

�22�

with the initial condition

Gi�n,0� = 1, n � �0,J� , �23�

where the coefficients Vi and Di are defined by �7�.
Then the distribution function for the persistence time or

the first passage time to extinction of the ith species with the
initial abundance n from the interval of abundances �0,J� is

Fi�n,t� = 1 − Gi�n,t� . �24�

And, furthermore, the probability density for the first persis-
tence time is equal to

f i�n,t� = − �Gi�n,t�/�t . �25�

Note that the distribution of the persistence time and the
first extinction time are extremely important in the Eqs.of
conservation biology. Since, from the known distribution of
the persistence time, one can find, for example, the probabil-
ity that the species is present in the community within given
fixed time interval.

In order to completely define the problem for the prob-
ability of remaining in the interval of species abundances
�0,J�, the boundary conditions for the probability at the spe-
cies abundances n=N−=0 and n=N+=J have to be specified.
Since we are interested in the first passage time to the zero
species abundance, we specify the absorbing boundary con-
dition at the boundary species abundance n=N−=0

Gi�0,t� = 0, t 
 0. �26�

Another type of boundary condition, called reflecting bound-
ary condition, is stated at the boundary abundance n=N+=J

��Gi�n,t�/�n�n=J = 0, t 
 0. �27�

This type of boundary condition is specified when it is
known that the species abundance cannot jump over some
abundance level.

B. Moments of the first passage time to extinction

For the known distribution function �Eqs. �22�, �23�, �26�,
and �27��, the mean first passage time to the zero species
abundance

Ti
1�n� = 

0

�

t
Fi�n,t�

�t
dt = 

0

�

Gi�n,t�dt , �28�

can be obtained from the ordinary differential equation

1

2
Di�n�

d2Ti
1

dn2 + Vi�n�
dTi

1

dn
= − 1, n � �0,J� �29�

supplemented with the absorbing boundary condition at the
boundary n=0 and the reflecting boundary condition at the
boundary n=J,

Ti
1�0� = 0, �dTi

1�n�/dn�n=J = 0. �30�

Similarly, the kth moment of the first passage time,
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Ti
k�n� = 

0

�

tkdtFi�n,t� = − k
0

�

tk−1Gi�n,t�dt , �31�

can be computed from the differential equation

1

2
Di�n�

d2Ti
k

dn2 + Vi�n�
dTi

k

dn
= − Ti

k−1, n � �0,J� , �32�

subject to boundary conditions �30� for Ti
k.

Note that the kth moment of the first passage time to
extinction of the ith species satisfies the following property

�Ti
k�n���=�̄ =

1

�̄kTi
k��n���=1. �33�

It follows from �33� that the kth moment of the first extinc-
tion time is inversely proportional to the kth power of �.
Thus, we can say that the parameter �, the number of death
events per the unit time interval, plays a role of the time
scale for the time evolution of the species abundance in local
community. The importance of the time scale and the prob-
lems with it defining in neutral theory of biodiversity was
noticed and discussed by Nee �36�, Lande et al. �1�, and
Leigh �42�.

Note also that the problem for the mean first extinction
time can be solved explicitly �39� as

Ti
1�n� = 2

0

n dy

Di�y�Pi�y�y

J

Pi�z�dz , �34�

where Pi is the equilibrium probability density of the ith
species abundance. Furthermore, it can be shown that Ti

1�n�
is an increasing function of the initial abundance n, and,
moreover, dTi

1�n� /dn�0 for n� �0,J�.

C. Moments of the first passage time to fixation

The problem of the first passage time to species fixation
�extinction or monodominance� can be also addressed using
the backward Kolmogorov-Fokker-Planck technique. In this
case we replace the reflecting boundary conditions at n=N+
=J by the absorbing boundary conditions in Eqs. �27� and
�30�.

Note also that as the equilibrium density of species abun-
dance, the first fixation time satisfies the symmetry property,
that is, the mean first passage times to fixation are equal for
two species with the metacommunity relative abundances
equal to �i=� and � j =1−�, if their initial abundances are n

and J−n, respectively, where J is the size of the local com-
munity

�Tfix,i
1 �n���i=� = Tfix,i

1 ��J − n���j=1−�. �35�

D. Probability of the species extinction

The probability of the species extinction is another char-
acteristic of species behavior in local community. Using this
probability we can estimate the chance of the species to go
extinct in comparison with the chance of it to monodomi-
nate. The probability of extinction for the ith species �i

0�n�
can be calculated from the following ordinary differential
equation �39�:

1

2
Di�n�

d2�i
0

dn2 + Vi�n�
d�i

0

dn
= 0, n � �0,J� �36�

with the boundary conditions

�i
0�0� = 1, �i

0�J� = 0. �37�

The probability of complete dominance for the ith species in
the local community, �i

J�n�, can be obtained from the equa-
tion

�i
0�n� + �i

J�n� = 1,

or from Eq. �36� supplemented with the reverse boundary
conditions to �37�.

E. Quasiextinction

Quasiextinction is another concept related to the extinc-
tion process. By this concept a species is considered extinct
once it reaches or falls below some small level �quasiextinc-
tion level� of abundance �1,41�. Assuming that C�0 is a
level of quasiextinction �a lower absorbing boundary of spe-
cies abundance�, the problems for the first passage time to a
quasiextinction of the ith species and for the probability of
the species quasiextinction can be formulated by replacing
the lower bound for critical species abundance N−=0 by
N−=C in the respective problems for the first passage time to
extinction and the probability of extinction. Note that the
mean first passage time to quasiextinction can also be calcu-
lated from the following expression:

Ti
1�n� = Ti

1�n,C� + Ti
1�C,0�, n � C ,

where Ti
1�n ,k� is the mean first passage time for the ith spe-

cies from the initial abundance n�C to the abundance k,
n�k.

III. SENSITIVITY ANALYSIS FOR SPECIES DYNAMICS
IN LOCAL COMMUNITY

A. Analysis of species abundance distributions

In this section, the properties of species abundance distri-
bution with respect to different values of the immigration
probability m, the species metacommunity relative abun-
dance �i, and the community size J will be investigated.
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Let us first consider mixed boundary conditions �10�. At
both ends n=0 and n=J of the abundance interval, these
boundary conditions can be rewritten as

Di�n�
�pi

�n
+ �Di��n� − 2Vi�n��pi = 0. �38�

At the abundance level n=0 condition �38� degenerates to
the zero flux boundary condition, also known as the Neu-
mann boundary condition, in the form ��pi /�n�n=0=0 when
Di��0�−2Vi�0�=0. At the abundance n=J, condition �38� also
transforms to the Neumann boundary condition ��pi /�n�n=J
=0 when Di��J�−2Vi�J�=0. The zero flux boundary condi-
tions imply zero gradient of the probability of species abun-
dances at n=0 and n=J, that is they state that the changes in
the species abundance at the boundaries are negligible. The
values of the immigration probability, m, for which the above
conditions are fulfilled can be calculated at each boundary.
Specifically at the abundance level n=0

m0 =
1

�J − 1���i + �i/J + 1/J − 1 − 1/2J�
,

and at n=J

mJ =
1

�J − 1��1 − �i − �i/J + 1/J − 1 + 1/2J�
.

For large local community sizes these values are equal to the
drift with respect to the specific species i in the local com-
munity and to the drift with respect to all species other than
the species i, that is, m0�1/ ��iJ� and mJ�1/ ��1−�i�J�,
respectively. Note that for the species with small metacom-
munity relative abundance, the drift with respect to all spe-
cies other than the species i in the local community is ap-
proximately equal to the drift in the local community, 1 /J.

Let us restrict our analysis of the probability density to the
species with the metacommunity relative abundance smaller
then 1

2 , i.e., �i
1
2 . The results for �i
1/2 can be obtained

in an analogous manner and will be only commented.
We shall examine the structure of the species abundance

distribution separately for the three intervals of the immigra-
tion probability �0,mJ�, �mJ ,m0�, and �m0 ,1�. For the first
interval of the immigration probability �0,mJ�, we observe
the probability that the species will go extinct or monodomi-
nate in the local community is very high, see Fig. 1 for 0
m�0.005=1/J�mJ. In this case the probability density
of the species abundance has a U shape, see also Ref. �16�,
the immigration events are so rare that the species most of
the time are either at the abundance level 0, or J. Since the
new immigrants are rare and fundamentally change the struc-
ture of the local community, this type of immigration can be
considered rather as catastrophic than regular. Note also that
because the immigration probability is smaller than the drift
with respect to the specific species in the local community
and to the drift with respect to all species other than the
specific species, the immigration effect is too small for spe-
cies turnover in the local community, and diversity of such
community is very low.

When the immigration probability belongs to the second
interval from mJ to m0, new individuals immigrate to the

local community much more often than in the first case. This
type of immigration essentially increases the diversity of the
community, and decreases the chance of the species mon-
odominance. Nevertheless, the intensity of immigration is
still too low to essentially decrease the probability of extinc-
tion of the specific species. In this case the equilibrium prob-
ability density for the species abundance has an “S” shape
with the maximal value at zero abundance, see Fig. 1 for
mJ�1/J=0.005m0.1=1/ ��1−��J��m0.

Finally, for the third interval of the immigration probabil-
ity from m0 to 1, the species in the local community becomes
much more stable around nonzero species abundance than in
the first two cases, see Fig. 1 for m�1/ ��1−��J�=0.1. And
the level of stabilization increases with an increase of the
immigration probability. The mode of the probability density
for the species abundance is near �J, and the probability
density has a reverse U shape. Moreover, the species turn-
over is very intensive for the immigration probabilities
higher than the drift with respect to the specific species in the
local community.

The immigration probability has a different effect on the
common species with �i�

1
2 . In this case the first interval for

the immigration probability from 0 to m0 can be classified as
the interval with a high chance of species fixation. As in the
case with �

1
2 the species will occupy all local community

or go extinct most of the time. The second interval, where
the immigration probability is between m0 and mJ, is charac-
terized by high probability of the species monodominance,
that is, most of the time the species will occupy all local
community. And, finally, for the immigration probabilities
larger than mJ, the mode of the probability density of the
species abundance is located between 0 and J. Note also that
if the metacommunity relative abundance �i=

1
2 , the interme-

diate interval of the probability of immigration is degener-
ated, see Fig. 2�a�.

FIG. 1. �Color online� The effect of varying the probability of
immigration m on the equilibrium probability density function for
the abundance of the ith species in Hubbell’s zero-sum local com-
munity. Numerical results for a local community of J=200 indi-
viduals and the species metacommunity relative abundance �i

=0.05 are obtained from the exact solution �16� of Eqs. �13� and
�14�.
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The results for species dynamics in the local community
obtained from the above analysis are summarized in Figs.
2�a� and 2�b�. Figure 2�a� shows four possible scenarios for
the species dynamics in the local community: �i� low immi-
gration intensity: the species most of the time is either not
present or monodominant in the local community, see also
Ref. �16�; �ii� medium immigration intensity with small
metacommunity relative abundance: the species most of the
time is absent from the local community; �iii� medium im-
migration intensity with high metacommunity relative abun-
dance: the species most of the time is monodominant; and
�iv� high immigration intensity: the species in the local com-
munity persists with high probability, and its relative abun-
dance in the local community is more similar to those in the
metacommunity, see also Ref. �16�.

With an increase in the immigration probability, scenario
�i� changes first into either scenario �ii� or �iii�, and then into

scenario �iv�. Also it is worth noting that when the metacom-
munity relative abundances is either very small or very high,
the species dynamics can follow only two scenarios, see Fig.
2�a�. In the first case because the immigration probability is
never high enough for the species abundance to be stabilized
around a nonzero mode in the local community, the probabil-
ity for this species to go extinct is very high. In the second
case, when the metacommunity relative abundance is very
high, the probability that the species will occupy all commu-
nity is also very high.

Figure 2�b� shows results of the sensitivity analysis for
species dynamics with respect to different local community
sizes. Specifically, it shows that for larger local communities,
a smaller immigration probability is required for species per-
sistence.

B. Effect of immigration probability

In the previous section we defined four possible scenarios
for species dynamics in the local community with respect to
the immigration probability, metacommunity relative abun-
dance, and size of the local community. Here we look at the
first passage time of the species to either extinction or fixa-
tion �extinction or monodominance� in the local community
with respect to the immigration probability and initial spe-
cies abundance. We shall consider the effect of the immigra-
tion probability separately for each possible scenario for low
metacommunity species abundance. The case with high
metacommunity species abundance will not be considered in
detail, since the behavior of the first passage time dynamics
is essentially the same.

We start from scenario �i� for which the immigration
probability is very small. In this case the species becomes
fixed in a much shorter time interval than the time to the next
immigration event, thus the distribution and dynamics of the
species abundance are very similar to the case without im-
migration. Since the species most of the time stays at the
abundance level equal to the local community size or zero,
each immigration event can be viewed as a catastrophic per-
turbation into the stabilized system at the constant species
abundance.

In general, the first extinction time problem for scenario
�i� is not very informative, since the species can have abun-
dance close to the local community size most of the time
�Fig. 1� and the probability that the species abundance will
change to a smaller level is very low �Fig. 3�f��. This per-
suades to very high uncertainty in the result for the first
extinction time �Fig. 3�e��. More intensive immigration to
the local community leads to an increase in the probability of
change in the species abundance from very large initial abun-
dance to the abundance close to zero. Thus, as a result, the
mean and variance of the first passage time to extinction
decreases �Figs. 3�b� and 3�e��.

Since the uncertainty in the first passage time to fixation
for species with low immigration intensity is of smaller order
than the uncertainty in the first passage time to extinction,
the first fixation time can be considered as a more effective
measure of species viability in this case. Note also that the
first fixation time, on the contrary to the first extinction time,

FIG. 2. Classification for the local community species dynamics
with respect to �a� different values of the immigration probability
and the metacommunity species relative abundance; �b� different
values of the immigration probability and the size of local
community.
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FIG. 3. �Color online� The effect of varying the probability of immigration m on the first passage times to extinction and fixation and on
the probability of extinction for the ith species in Hubbell’s zero-sum local community of J=200 individuals and the species metacommunity
relative abundance �=0.05: �a� the mean first passage time to extinction as a function of the initial species abundance for different values
of m �Eqs. �29� and �30��; �b� the mean first passage time to extinction as a function of the immigration probability for different values of
the initial species abundance �Eqs. �29� and �30��; �c� the mean first passage time to fixation as a function of the initial species abundance
for different values of m �Eq. �29� with absorbing boundary conditions at n=N−=0 and n=N+=J �see Sec. II C��; �d� the mean first passage
time to fixation as a function of the immigration probability for different values of the initial species abundance �Eq. �29� with absorbing
boundary conditions �see Sec. II C��; �e� the standard deviations of the first extinction and fixation times �Eqs. �29� and �32� with boundary
conditions �30� for extinction time and absorbing boundary conditions for fixation time �see Sec. II C��; �f� the probability of species
extinction �Eqs. �36� and �37��. All results are obtained using numerical approximations.
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increases with an increase in the immigration probability, see
Figs. 3�b� and 3�d� for small m.

Another interesting question for investigation concerns
comparison of the first passage time to fixation or extinction
in communities with small immigration probability to the
communities without immigration, m=0. For m=0 there are
two absorbing states for the species abundance of 0 and J,
and the extinction event never occurs if the species totally
occupies the local community. However, even for very small
immigration intensity, the probability of extinction is always
non-negative. Figure 3�a� illustrates the asymptotic conver-
gence of the first passage time to extinction as m→0. The
asymptotic analysis shows that the mean first passage time to
extinction Text

1 �n� converges to

− J�J − 1�� J − n

J
ln

J − n

J
+

n

J
ln

n

J
� + C0

n

J
�39�

as m→0, where C0 is the positive constant, while the mean
first passage time to fixation can be approximated by

Tfix
1 �n� → − J�J − 1�� J − n

J
ln

J − n

J
+

n

J
ln

n

J
� �40�

as m→0. Hubbell �16� in his analysis of the isolated local
community �m=0� based on discrete Markov chain ap-
proach, obtained the following explicit formula for the mean
first passage time to fixation:

T�N� = �J − 1���J − N��
k=1

N

�J − k�−1 + N �
k=N+1

J−1

k−1� .

It is easy to note that the above expression is in agreement
with our result, that is, Tfix

1 �N� converges to T�N� as m→0,
see also Fig. 3�c�.

Note also that approximations �39� and �40� state that in
communities with very small immigration probabilities, the
species metacommunity relative abundance plays almost no
role in community species dynamics.

A further increase of the immigration probability �sce-
nario �ii�� makes the local community richer on newcomers,
the community becomes more diverse, and the turnover rate
increases. As a result the species abundance distribution
curve becomes S shaped with the mode at the zero abun-
dance. Naturally, the dynamics of extinction and fixation pro-
cesses go through many changes during this transition sce-
nario. From Fig. 3�b� we can observe that the switching
between the decrease and increase of the mean first passage
time to extinction with respect to the immigration probability
takes place around the immigration probabilities from sce-
nario �ii�. For this scenario the mean and variance of the first
fixation time becomes closer to the mean and variance of the
first extinction time. This is due to the fact that for small
species metacommunity relative abundance only the extinc-
tion is highly probable, the probability of monodominance is
very small, see Figs. 3�b�, 3�d�, and 3�e�.

Finally, we shall consider the interval of large immigra-
tion probabilities �scenario �iv��. For this interval, the maxi-
mal probability of the species abundance is achieved for an
abundance close to the mode �iJ and this probability in-

creases with an increase in the immigration probability. The
species abundance is more stable around the mode �iJ for
higher immigration intensity, see Fig. 1. As a consequence
the mean and variance of the first passage times to extinction
and fixation for these species increase with the increase in
the immigration probability, see Figs. 3�b� and 3�d�.

Now let us summarize the relationship between the mean
first passage times to extinction and fixation and the initial
species abundance. It was already mentioned above that for
very small values of the immigration probability the mean
first extinction and fixation times are independent of the spe-
cies metacommunity relative abundance. For small immigra-
tion probabilities, the mean first extinction time is almost
proportional to the initial species abundance; the mean first
fixation time increases on the interval �0,J /2�, and decreases
symmetrically on �J /2 ,J�, see Figs. 3�a� and 3�c�. As the
immigration probability increases the mean first fixation and
extinction times become closer to each other for all initial
abundances distinct from the abundances close to J. Note
also that for communities with large immigration intensities
the first extinction and fixation times are almost constant for
the initial species abundances inside of the interval �0,J�. At
the initial abundances close to zero the mean first extinction
and fixation times increase sharply from the zero level to
some positive constant level. Similarly, the mean first fixa-
tion time decreases to zero sharply in the small vicinity of
the initial abundance J, see Figs. 3�a� and 3�c�.

C. Effect of species metacommunity relative abundance

Figure 4�a� illustrates the effect of varying species meta-
community relative abundance, �i, on the equilibrium spe-
cies abundance probability density for the immigration prob-
ability m=0.02�0.01=2/J. For small metacommunity
relative abundance �i�0.2, it can be seen from Fig. 4�a� that
the species dynamics follows scenario �ii�; for large meta-
community relative abundance �i
0.8, the species dynam-
ics follows scenario �iii�, and for 0.2�i0.8, the species
dynamics follows scenario �iv�.

Analogous analysis can be carried out for small values of
the immigration probability m. Specifically, it can be shown
that for m0.005=1/J the species dynamics follows sce-
nario �i� for all possible values of the metacommunity rela-
tive abundance, while for the immigration probabilities from
the interval �1/J ,2 /J�, the species dynamics first follows
scenario �ii� for small �i, then switches to scenario �i� and,
finally, for large �i to scenario �iii�.

Figures 4�b� and 4�c� show the behavior of the mean first
passage time to extinction and fixation. From Fig. 4�b� one
can easily see that the mean first passage time to extinction is
an increasing function of the metacommunity relative abun-
dance, and the initial species abundance. This behavior of the
extinction time is related to the species persistence in the
local community: the persistence time is longer for the spe-
cies with larger abundance and for the species with a larger
number of members in the metacommunity. From Fig. 4�c�
one can infer that the mean first passage time to fixation
satisfies the symmetry property given by Eq. �35�. Note that
this property is essentially straightforward for an understand-
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ing in the case of two species in the zero-sum local commu-
nity, since extinction of one species means monodominance
of another species in the community.

D. Effect of community size

The effect of varying local community size, J, on the
steady state �equilibrium� probability density function is
shown in Fig. 5�a�. For the present analysis, the immigration
probability was fixed at the level of 0.01, and the metacom-
munity relative abundance was chosen to be 0.2. It can be
seen from Fig. 5�a� that the patterns of equilibrium species
abundance are changing when the size of the local commu-
nity increases. For small local communities, i.e., J=100, the
immigration intensity is too low for species persistence,

FIG. 4. The effect of varying the metacommunity relative abun-
dance �i of the ith species on �a� the equilibrium probability density
function of the species abundance obtained from the exact solution
�16� of Eqs. �13� and �14�; �b� the mean first passage time to ex-
tinction of the ith species obtained from the numerical approxima-
tions of Eqs. �29� and �30�; �c� the mean first passage time to fixa-
tion of the ith species obtained from the numerical approximations
of Eq. �29� with absorbing boundary conditions at n=N−=0 and n
=N+=J �see Sec. II C�. Example for a local community of J=200
individuals and the immigration probability m=0.02.

FIG. 5. The effect of varying the local community size J on �a�
the equilibrium �steady state� probability density function of the ith
species abundance obtained from the exact solution �16� of Eqs.
�13� and �14�; �b� the mean first passage time to extinction of the ith
species in Hubbell’s zero-sum local community obtained from the
numerical approximations of Eqs. �29� and �30�. Example for the
species metacommunity relative abundance �i=0.2, and the immi-
gration probability m=0.01.

PETRO BABAK PHYSICAL REVIEW E 74, 021902 �2006�

021902-10



m=0.01min�m0 ,mJ�, and the species dynamics follows
scenario �i� with a very high chance of species fixation. For
the local communities of size J=200, 300, 400, and 500, the
species dynamics follows scenario �ii� with a very high
chance of extinction �mJm�m0�. And, finally, for the local
communities of size J�500, the species follow scenario �iv�
with a high probability of persistence and high diversity �m
�max�m0 ,mJ��. The dynamics of the first passage time to
extinction also differs with respect to the size of the local
community, see Fig. 5�b�. If the size of the local community
is small, then the species follows scenarios �i� or �ii� with a
high probability of extinction and, moreover, the first pas-
sage time to species extinction is a strictly increasing func-
tion of the initial species abundance. Since, for larger com-
munities, smaller immigration intensity is required for
species persistence, see Fig. 2�b�, the species abundance is
inside of the interval �0,J� most of the time, and thus, the
mean first passage time to species extinction is almost inde-
pendent of the initial species abundance.

E. Probability density of the first passage time to extinction

To complete our analysis of the species dynamics, let’s
consider the distribution function Fi�n , t� of the first passage
time to extinction of the ith species. Note that the distribution
function of the first extinction time Fi�n , t� in the local com-
munity defines the risk or probability of extinction of the ith
species with the initial abundance n before time t. It is di-
rectly related to another fundamental quantity for conserva-
tion biology, the probability of species persistence, Gi�n , t�,
by the following expression Gi�n , t�=1−Fi�n , t�.

Figures 6�a� and 6�b� present the effects of varying initial
abundance n0 of the ith species on the probability distribu-
tion and density of the first extinction time t in a local com-
munity of J=200 individuals undergoing zero-sum ecologi-
cal drift ��i=0.05, m=0.05�. Note that numeric
approximations for the probability distribution function
shown in Fig. 6�a� were obtained from Eqs. �22�, �23�, �26�,
and �27�. The probability density functions shown in Fig.
6�b� were calculated as �Fi�n , t� /�t using the distribution
functions of the first extinction time Fi�n , t�. Alternatively,
they could also be obtained from Eq. �22� or as
1
2Di�n��2Fi /�n2+Vi�n��Fi /�n.

Unfortunately, there is no explicit formula for the distri-
bution of the first passage time to extinction. So, we will
compare our numerical results for the distribution of the first
extinction time to gamma distribution. It was presumed by
Hubbell �16� that gamma distribution is giving a good fit for
the distribution of the first passage time to extinction. To
verify this observation of Hubbell, the theoretical probability
densities of the first passage time to extinction obtained from
Eqs. �25� for the species with small and large initial abun-
dances were compared to the relative frequencies of the first
passage time to extinction calculated based on the simula-
tions of Hubbell’s model �1�, and to the shifted gamma dis-
tributions fitted to simulated values of the first extinction
times, see Fig. 7. From Fig. 7 one can note that for the initial
abundance of the species n0=50 in a local community of size
J=200, a shifted gamma distribution gives a good fit to the

simulated frequencies of the first extinction time and is close
to the probability density of the first passage time to extinc-
tion calculated from Eq. �22�; however, for smaller initial
species abundance, i.e., n0=5, a shifted gamma distribution
does not give a good fit to the distribution of the first passage
time to extinction. Thus, we can conclude that gamma distri-
bution produces a good fit to the probability density of the
first passage time to extinction only for large initial species
abundances, but for small initial species abundances such fit
is unsatisfactory.

IV. DISCUSSION AND CONCLUSIONS

The unified neutral theory of biodiversity and biogeogra-
phy proposed by Hubbell �19� aims to explain the species

FIG. 6. The effect of varying the initial abundance n0 of the ith
species on �a� the probability distribution function, and �b� the prob-
ability density function for the first passage time to extinction. Re-
sults are obtained from numerical approximations of Eqs. �22�, �23�,
�26�, and �27� and �a� Eq. �24�, �b� Eq. �25�. Example for a local
community of J=200 individuals, the species metacommunity rela-
tive abundance �i=0.05, the immigration probability m=0.05, and
the number of death events per unit time �=1.
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diversity and relative species abundance in ecological com-
munities relying on the principles of zero-sum game and
neutrality. Up to this time the zero-sum neutral model of
Hubbell was analyzed using only discrete techniques such as
Markov chain analysis �19� and analysis of master birth-
death ordinary differential equations for the species abun-
dance probability distribution �21–23�. In this work, Hub-
bell’s model was considered from a different perspective. A
continuous technique based on the Kolmogorov-Fokker-
Planck forward and backward equations was applied for the
investigation of the processes in the local communities. This
technique gave us a possibility not only to work with com-
munities of any size, but also derive such important mea-
sures in conservation biology as the probability distributions
of the persistence time and the first passage time to extinc-
tion and fixation. Note that the model for the distribution of
the first passage time of the species to extinction in zero-sum
local community has not been obtained before. The pre-
sented model was evaluated and verified through the simula-
tion study of Hubbell’s neutral zero-sum model, see Fig. 7.
Figure 7 shows that for the species with large initial abun-
dances, the distribution of the first passage time to extinction
is very close to gamma distribution, as it was presumed by
Hubbell �19�, but for the species with small initial abun-
dance, gamma distribution does not give a good fit to the first
passage time to extinction.

Moreover, the main significance of this work lies in pro-
posing a realistic classification for the species dynamics in
the local community, see Figs. 2�a� and 2�b�. The species
dynamics classification was obtained from the sensitivity
analysis of the species abundance distribution and was for-
mulated with respect to the immigration intensity, species
metacommunity relative abundance, and, of course, the size
of the local community. According to this classification, the
four possible scenarios for the species abundance dynamics
in the local community are the following.

�i� Low immigration intensity �mmin�m0 ,mJ��: the spe-
cies most of the time is either monodominant or not present
in the local community; the local community is characterized
by low diversity �only one monodominant species�; the spe-
cies abundance distribution is U shaped; immigration has
catastrophic character.

�ii� Medium immigration intensity �mJmm0� with
small metacommunity relative abundance ��

1
2

�: the spe-
cies goes extinct with high probability; the local community
is characterized by medium diversity; the species abundance
distribution is S shaped.

�iii� Medium immigration intensity �m0mmJ� with
high metacommunity relative abundance ��

1
2

�: the species
becomes monodominant with high probability; the local
community is characterized by medium diversity; the species
abundance distribution has reverse S shape.

�iv� High immigration intensity �m�min�m0 ,mJ��: the
species in the local community has approximately stable
abundance �J; the turnover of species is high; the local com-
munity is characterized by high diversity; the species abun-
dance distribution has reverse U shape.

Note that such quantitative characterization of the species
abundance distributions has not been obtained before.

Also in this paper, the time scale parameter was investi-
gated. It is known that this parameter plays an important role
in the species dynamics of living communities �36�, since it
defines how fast the community structure changes with time.
A scale parameter for the time evolution of the species abun-
dance distribution in our model is the parameter �, which
denotes the number of death events per unit time. We have
shown that the kth moment of the first passage time to ex-
tinction and the kth power of � are inversely related, but the
equilibrium distribution of species abundance is independent
of the time scale parameter �.

Finally, in this paper a complicated behavior of the mean
first passage time to extinction with respect to the immigra-
tion intensity was studied. It was noticed �16� that for small
immigration probabilities, the first extinction time decreases
with an increase in the immigration intensities, see Fig. 3�b�.
As our analysis shows, this behavior is typical for the local
communities with small immigration probabilities �scenario
�i��. The species in such communities not only have a high
chance to go extinct, but also have a high chance to mon-
odominate. Moreover, more intensive immigration in such a
community leads to an increase in the probability of the spe-
cies to leave the monodominant state and, therefore, will lead
to an increase in the probability of the species extinction. As
a result, the mean of the first extinction time will decrease.

FIG. 7. �Color online� Comparison of the probability density of
the first passage time to extinction �solid lines� obtained from nu-
merical approximations for continuous probabilistic model �Eqs.
�22�, �23�, �26�, and �27��, and Eq. �25� to the relative frequencies
of the first extinction time �dots� calculated from simulations of
Hubbell model �1�, and to the probability density functions of
shifted gamma distributions fitted to the simulated first extinction
times �dashed lines�. Example for the initial species abundances
n0=5 and n0=50 in a local community of size J=200, the species
metacommunity relative abundance �i=0.05, the immigration prob-
ability m=0.05, and the number of death events per unit time �
=1.

PETRO BABAK PHYSICAL REVIEW E 74, 021902 �2006�

021902-12



For large immigration intensities �scenario �iv��, the mean
first passage time to extinction increases with the increase in
the immigration probability. This is connected to the fact that
the rate of species turnover in such local community in-
creases and the species abundance stabilizes around �J. Note
that the change in the monotonicity of the mean first time to
extinction will occur only for the values of the immigration
probabilities from the intermediate scenario �ii� or �iii�.

ACKNOWLEDGMENTS

I greatly appreciate Dr. Fangliang He for his support and
guidance without which this work would not have been pos-
sible. I also would like to thank Dr. Xin-Sheng Hu for fruit-
ful discussions of the results and two anonymous reviewers
for helpful comments on an earlier version of the manuscript.
This work was supported by an NSERC �Canada� grant to
Fangliang He.

�1� R. Lande, S. J. Engen, and B. E. Saether, Stochastic Popula-
tion Dynamics in Ecology and Conservation �Oxford Univer-
sity Press, Oxford, 2003�.

�2� R. B. Primack, Essentials of Conservation Biology �Sinauer
Associates, Inc., Sunderland, MA, 2002�.

�3� S. Engen, Stochastic Abundance Models with Emphasis on
Biological Communities and Species Diversity �Chapman &
Hall, London, 1978�.

�4� A. E. Magurran, Measuring Biological Diversity �Blackwell,
Malden, MA, 2004�.

�5� R. A. Fisher, A. S. Corbet, and C. B. Williams, J. Anim. Ecol.
12, 42 �1943�.

�6� F. W. Preston, Ecology 29, 254 �1948�.
�7� R. H. MacArthur, Proc. Natl. Acad. Sci. U.S.A. 43, 293

�1957�.
�8� R. H. MacArthur, Am. Nat. 94, 25 �1960�.
�9� M. G. Bulmer, Biometrics 30, 101 �1974�.

�10� R. M. May, in Ecology of Species and Communities, edited by
M. Cody and J. M. Diamond �Harvard University Press, Cam-
bridge, MA, 1975�.

�11� G. Sugihara, Am. Nat. 116, 770 �1980�.
�12� S. Engen and R. Lande, Math. Biosci. 132, 169 �1996�.
�13� S. Engen and R. Lande, J. Theor. Biol. 178, 325 �1996�.
�14� G. Bell, Science 293, 2413 �2001�.
�15� K. J. Gaston and S. L. Chown, Funct. Ecol. 19, 1 �2005�.
�16� S. P. Hubbell, The Unified Neutral Theory of Biodiversity and

Biogeography �Princeton University Press, Princeton, NJ,
2001�.

�17� H. Caswell, Ecol. Monogr. 46, 327 �1976�.
�18� S. Pueyo, Oikos 112, 392 �2006�.
�19� D. Alonso and A. J. McKane, Ecol. Lett. 7, 901 �2004�.
�20� R. S. Etienne and D. Alonso, Ecol. Lett. 8, 1147 �2005�.
�21� A. McKane, D. Alonso, and R. V. Sole, Theor Popul. Biol. 65,

67 �2004�.
�22� M. Vallade and B. Houchmandzadeh Phys. Rev. E 68, 061902

�2003�.
�23� I. Volkov, J. R. Banavar, S. P. Hubbell, and A. Maritan, Nature

�London� 424, 1035 �2003�.
�24� B. A. Maurer and B. J. McGill, J. Appl. Ecol. 5, 413 �2004�.
�25� B. J. McGill, Nature �London� 422, 881 �2003�.
�26� S. Nee and G. Stone, Trends Ecol. Evol. 18, 433 �2003�.
�27� M. Williamson and K. J. Gaston, J. Anim. Ecol. 74, 409

�2005�.
�28� S. P. Hubbell, Coral Reefs 16, S9 �1997�.
�29� R. S. Etienne and H. Olff, Ecol. Lett. 7, 170 �2004�.
�30� F. He and X.-S. Hu, Ecol. Lett. 8, 386 �2005�.
�31� B. Houchmandzadeh and M. Vallade, Phys. Rev. E 68, 061912

�2003�.
�32� A. McKane, D. Alonso, and R. V. Sole, Phys. Rev. E 62, 8466

�2000�.
�33� R. V. Sole, D. Alonso and J. Saldana, Ecol. Complexity 1, 65

�2004�.
�34� I. Volkov, J. R. Banavar, F. He, S. P. Hubbell, and A. Maritan,

Nature �London� 438, 658 �2005�.
�35� G. Chave, Ecol. Lett. 7, 241 �2004�.
�36� S. Nee, Funct. Ecol. 19, 173 �2005�.
�37� R. E. Ricklefs, Oikos 100, 185 �2003�.
�38� X.-S. Hu, F. He, and S. P. Hubbell, Oikos 113, 548 �2006�.
�39� C. W. Gardiner, Handbook of Stochastic Methods for Physics,

Chemistry and the Natural Sciences �Springer-Verlag, Berlin,
Heilderberg, 1983�.

�40� R. Lande, Am. Nat. 142, 911 �1993�.
�41� L. R. Ginzburg, L. B. Slobodkin, K. Johnson, and A. G. Bind-

man, Risk Anal. 2, 171 �1982�.
�42� G. Leigh, Tropical Forest Ecology �Oxford University Press,

Oxford, 1999�.

CONTINUOUS PROBABILISTIC APPROACH TO¼ PHYSICAL REVIEW E 74, 021902 �2006�

021902-13


